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Abstract Invasion risks may be influenced either 
negatively or positively by climate change, depending 
on the species. These can be predicted with species 
distribution models, but projections can be strongly 
affected by the source of the environmental data (cli-
mate data source, Global Circulation Models GCM 
and Shared Socio-economic Pathways SSP). We 
modelled the distribution of Phelsuma grandis and 

P. laticauda, two Malagasy reptiles that are spread-
ing globally. We accounted for drivers of spread and 
establishment using socio-economic factors (e.g., dis-
tance from ports) and two climate data sources, i.e., 
Climatologies at High Resolution for the Earth’s and 
Land Surface Areas (CHELSA) and Worldclim. We 
further quantified the degree of agreement in invasion 
risk models that utilised CHELSA and Worldclim 
data for current and future conditions. Most areas 
identified as highly exposed to invasion risks were 
consistently identified (e.g. in Caribbean and Pacific 

Supplementary Information The online version 
contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10530- 023- 03082-8.

N. Dubos (*) · A. Crottini 
CIBIO, Centro de Investigação em Biodiversidade e 
Recursos Genéticos, InBIO Laboratório Associado, 
Universidade do Porto, Campus de Vairão, 
4485-661 Vairão, Portugal
e-mail: dubos.research@gmail.com

N. Dubos · A. Crottini 
BIOPOLIS Program in Genomics, Biodiversity and Land 
Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, 
Portugal

N. Dubos 
TETIS, INRAE, Maison de la télédétection, University 
of Montpellier, 500 rue Jean-François Breton, 
34093 Montpellier Cedex 5, France

T. W. Fieldsend 
Department of Biological Sciences, Florida International 
University, Miami, FL 33199, USA

M. A. Roesch 
Nature Océan Indien, 97429 Petite-Ile, La Réunion, France

S. Augros 
Eco-Med Océan Indien, Saint-Denis, France

A. Besnard 
CEFE, CNRS, EPHE-PSL University, IRD, University 
of Montpellier, Montpellier, France

A. Choeur 
UMR ENTROPIE, University of Reunion Island, 
Saint-Denis, La Réunion, France

I. Ineich 
Institut de Systématique, Évolution, Biodiversité 
(ISYEB), Muséum national d’Histoire naturelle, Sorbonne 
Université, École Pratique des Hautes Études, CNRS, 
Université des Antilles, CP 30, 57 rue Cuvier, 75005 Paris, 
France

K. Krysko 
Division of Herpetology, Florida Museum of Natural 
History, Gainesville, FL, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10530-023-03082-8&domain=pdf
http://orcid.org/0000-0002-1224-2598
http://orcid.org/0000-0002-8395-5229
http://orcid.org/0000-0001-9861-290X
http://orcid.org/0000-0002-1651-3797
http://orcid.org/0000-0003-1235-1505
https://doi.org/10.1007/s10530-023-03082-8
https://doi.org/10.1007/s10530-023-03082-8


 N. Dubos et al.

1 3
Vol:. (1234567890)

Islands). However, projected risks differed locally. 
We also found notable differences in quantitative 
invasion risk (3% difference in suitability scores for 
P. laticauda and up to 14% for P. grandis) under cur-
rent conditions. Despite both species native distribu-
tions overlapping substantially, climate change will 
drive opposite responses on invasion risks by 2070 
(decrease for P. grandis, increase for P. laticauda). 
Overall, projections of future invasion risks were the 
most affected by climate data source, followed by 
SSP. Our results highlight that assessments of current 
and future invasion risks are sensitive to the climate 
data source, especially in islands. We stress the need 
to account for multiple climatologies when assessing 
invasion risks.

Keywords CHELSA climatologies · Invasive alien 
species · Madagascar reptiles · Species distribution 
models · Socio-economic factors · Worldclim 
climatologies

Introduction

Invasive Alien Species (IAS) are increasingly raising 
concerns about their impact in the future, notably due 
to their rising economic cost and ecological impact 
(Diagne et al. 2021). Invasion risks can be influenced 
by climate change either positively or negatively 

depending on the species (Bellard et  al. 2013). The 
assessment of invasion risks and how they will be 
influenced by climate change has become paramount 
to the development of proactive conservation actions.

Early detection is a key determinant to prevent 
invasions, suggesting the urgent need to identify 
priority areas for surveillance efforts. In this regard, 
a widely advocated management tool in conser-
vation biology is Species Distribution Modelling 
(SDM; Gallien et al. 2012; Lanner et al. 2022). This 
approach consists of identifying the environmental 
factors explaining the distribution of a species and 
predicting areas of high environmental suitability. In 
the case of IAS that are expanding, such tools allow 
identification of areas that have not yet been invaded, 
but where environmental conditions are suitable and 
where factors of introduction and spread are present 
(e.g. maritime traffic). The distribution of IAS may be 
explained and predicted by a combination of environ-
mental and socio-economic predictors (Bellard et al. 
2016; Lanner et  al. 2022). Environmental predictors 
(e.g. climate and habitat) may be used to identify 
areas where a candidate IAS is likely to further estab-
lish, while socio-economic predictors (e.g., proxim-
ity to ports and airports) represent factors of spread 
and entry points (Bertelsmeier and Courchamp 2014; 
Hulme 2021). The areas at high risk of invasion can 
then be prioritised for surveillance efforts.

Invasion risks may vary with climate change, and 
this can be assessed using SDMs that incorporate 
future climate projections (Bellard et  al. 2013; Gil-
lard et  al. 2017). Such projections vary depending 
on the chosen scenario (e.g., scenarios of projected 
socioeconomic global change such as Shared Socio-
economic Pathways, SSP, or scenarios of greenhouse 
gas emissions, such as Representative Concentration 
Pathways, RCP) and the Global Circulation Model 
(GCM, i.e., a methodological aspect). These factors 
can strongly affect SDMs and induce uncertainty in 
assessments of climate suitability (Buisson et  al. 
2010). More recently, the choice of the source of 
climate data (e.g., CHELSA or Worldclim; Fick and 
Hijmans 2017; Karger et  al. 2017) used for model 
calibration has been identified as a major source of 
uncertainty in SDMs (Baker et al. 2016; Dubos et al. 
2022a). These climatologies were computed with dif-
ferent approaches, which result in significant varia-
tions in the geographical projection of climate vari-
ables for the recent time period, which in turn can 
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dramatically affect model calibration and projection 
of climate change effects on species distributions. For 
instance, projections based on Wordclim data sug-
gested a dramatic decline in climate suitability for 
Phelsuma borbonica in Reunion Island, while almost 
no effect was predicted when calibrated on CHELSA 
(Dubos et  al. 2022a). The uncertainty related to cli-
mate data source can be of similar magnitude to 
that of the GCM, the selection of predictors (Dubos 
et al. 2022a) or the modelling technique (Stuart et al. 
2022). In spite of this, most SDM studies aimed at 
projecting future distributions use climate data from 
a single source. To our knowledge, no study has con-
sidered the uncertainty induced by the source of cli-
mate data in invasion risk assessments.

Reptiles represent one of the costliest invasive ani-
mal taxa in terms of damage and management, with 
an estimated economic cost of more than one bil-
lion dollars per year in the last decades (Diagne et. 
al. 2021). The increasing pace of reptile invasions, 
along with the associated ecological (e.g., trophic 
disruptions), evolutionary/conservation (e.g., through 
hybridisation or introgression), and sanitary costs 
(e.g. pathogen transmission) have led to a grow-
ing attention towards some species (Reed and Kraus 
2010; Sauteur et  al. 2013; Kraus 2015; Vuillaume 
et al. 2015; Bellinati et al. 2022; Breuil et al. 2022). 
However, invasive alien reptiles remain understudied 
compared to invertebrate and plant species (e.g., Bel-
lard et al. 2013) and there is a need to fill a knowledge 
gap in how climate change influences reptile invasion 
risks.

The Madagascar giant day gecko Phelsuma grandis 
Gray 1870 and the Gold-dust day gecko Phelsuma lat-
icauda Boettger 1880 are two Malagasy reptiles that 
have spread throughout the world. Phelsuma grandis 
is one of the largest living species of the genus, reach-
ing up to 30 cm in total length (i.e. twice the length 
of most Phelsuma species). Phelsuma laticauda is a 
medium-sized gecko, reaching up to 13  cm in total 
length; however, the species is considered an aggres-
sive competitor towards other smaller gecko species 
in French Polynesia and Reunion Island (Lund 2015; 
Deso et al. 2023), but also in its native range (Gehring 
et al. 2010). Due to their human-mediated spread and 
resulting risks to native communities, both are con-
sidered IAS outside of their native range, including 
areas in central-eastern Madagascar, Mauritius, Reun-
ion Island, Florida, French Polynesia and Hawaii (Ota 

and Ineich 2006; Krysko and Borgia 2012; Dubos 
2013; Buckland et al. 2014; Dubos et al. 2014; Lund 
2015; Fieldsend and Krysko 2019; Fieldsend et  al. 
2020, 2021c). The coexistence of Phelsuma spp. (or 
other reptiles sharing similar habitats such as anoles) 
may cause shifts in habitat use through competition 
(Harmon et al. 2007; Porcel et al. 2021; Wright et al. 
2021) that might be detrimental to the more special-
ised native species. In Mauritius, the introduction of 
P. grandis was associated with the extirpation of four 
populations of endemic Phelsuma species (Buckland 
et al. 2014). Both P. grandis, P. laticauda as well as 
several other Phelsuma species (e.g., P. kochi) are 
known to prey on other gecko specimens of smaller 
size (Gehring et al. 2010; Buckland et al. 2014; Rako-
tozafy 2019), which suggests potential predation risks 
to smaller species or juveniles of similar-sized spe-
cies. Their introduction also raised concerns regard-
ing the risk of disease and parasite transmission to 
native species (Dervin et al. 2014; Barnett et al. 2018; 
Fieldsend and Krysko 2019; Fieldsend et  al. 2021b; 
Unger et al. 2022), despite no evidence of cross-spe-
cies infection having been found so far (Goldberg and 
Bursey 2000; Leinwand et al. 2005). The spread of P. 
grandis and P. laticauda has led to increased atten-
tion regarding the conservation status of the native 
(and often endemic) fauna from Madagascar, Mauri-
tius and Reunion Island (Dubos 2013; Buckland et al. 
2014; Dubos et  al. 2014). Their co-occurrence with 
native Phelsuma species has raised concerns regard-
ing the long-term persistence of P. lineata, P. serrati-
cauda, P. inexpectata, P. borbonica, P. cepediana, P. 
guimbeaui, P. ornata, and P. rosagularis (Andreone 
et  al. 2003; Glaw and Vences 2007; D’Cruze et  al. 
2009; D’Cruze and Kumar 2011; Blumgart et  al. 
2017; Porcel et  al. 2021). Both the IAS considered 
here are commonly found in urbanised areas, on orna-
mental plants and in orchards, as well as primary 
rainforests, reflecting a large niche flexibility that may 
help to explain successful establishments (Fieldsend 
et al. 2021a). This illustrates the need to characterise 
their climatic niche in order to identify potential areas 
at risk of invasion at the global scale.

Here we modelled the distribution of P. grandis 
and P. laticauda under current and projected future 
climatic conditions, and predicted their invasion 
risks at the global scale. To determine whether the 
choice of climate data source affects invasion risk 
assessments, we quantified the degree of agreement 
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between current invasion risks based on the two main 
climate data sources available at the global scale 
(i.e., CHELSA and Worldclim). We account for mul-
tiple sources of uncertainty for each climate data by 
including two different climate scenarios (based on 
the SSP scenarios) and for each of these scenarios, 
multiple General Circulation models (GCMs) from 
the Coupled Model Intercomparison Project 6. To 
provide the most reliable conservation guidelines, 
we identify areas that are in agreement between pro-
jections derived from both climate data sources, and 
point out priority areas for monitoring to enhance 
the chances of early detection and prevent potential 
invasions.

Methods

Both P. grandis and P. laticauda are found in a vari-
ety of habitat types, including primary forests, highly 
degraded forests, orchards, and urbanised habitats 
(D’Cruze et  al. 2009; D’Cruze and Kumar 2011; 
Dubos et  al. 2014; Blumgart et  al. 2017). We thus 
assume that habitat variables represent poor predic-
tors of their environment, and that the species’ distri-
bution may be better predicted by climate variables 
(e.g., Fieldsend et  al. 2021a). Our analysis includes 
socio-economic factors such as proximity to roads, 
ports and airports, which are factors of spread or 
potential entry points.

Occurrence data

We retrieved occurrence data from the literature and 
opportunistic observations, both from native and 
non-native ranges (Madagascar, Mauritius, Reunion 
Island, Florida, French Polynesia and Hawaii; Glaw 
and Vences 2007; Raxworthy et  al. 2007; Pearson 
and Raxworthy 2009; Dubos 2013; Buckland et  al. 
2014; Dubos et al. 2014; Fieldsend and Krysko 2019; 
Fieldsend et  al. 2021a, 2021c; Porcel et  al. 2021), 
all of which were included for model calibration. In 
total, we obtained 338 unique occurrence records for 
P. grandis and 113 for P. laticauda. We thinned the 
data to avoid pseudo-replication and mitigate spatial 
biases, selecting one occurrence per pixel at the reso-
lution of the environmental variables (5 arc minutes, 
see below). This resulted in a sample of 91 presence 
points for P. grandis based on CHELSA, of which 50 

are within the native area and 41 in non-native areas 
(90 based on Worldclim; 49 and 41 points in native 
and non-native areas, respectively). For P. laticauda, 
the final sample represents 58 presence points, of 
which 19 are distributed in the native area and 39 
in the non-native area (59 points based on World-
clim; 18 and 41 points in native and non-native areas, 
respectively).

Climate data

We used 19 bioclimatic variables (description avail-
able at https:// www. world clim. org/ data/ biocl im. html; 
see also Booth et al. 2014) at 5 arc minutes (approxi-
mately 10  km) resolution for the current and future 
(2070) climate from two sources: CHELSA version 
1.2 (Karger et al. 2017) and Worldclim global climate 
data version 2.1 (Fick and Hijmans 2017) and version 
1.4 for future projections (to match the GCMs avail-
able in CHELSA at the time of model computing). 
These data sources used different methods to com-
pute the climatologies and result in different maps 
(see Fig. S1). Worldclim is based on interpolated 
data with elevation and distance to the coast as pre-
dictors in addition to satellite data (Fick and Hijmans 
2017), while CHELSA is based on statistical downs-
caling for temperature, and precipitation estimations 
incorporating orographic factors (i.e., wind fields, 
valley exposition, boundary layer height; Karger 
et al. 2017). We decided to include all 19 bioclimatic 
variables because both temperature and precipitation 
are related to the species’ biology, and we used a sta-
tistical process to select the most relevant ones (see 
below). For each climate data source, we selected one 
predictor variable per group of inter-correlated varia-
bles to avoid collinearity (Pearson’s r > 0.7; Dormann 
et  al. 2013) using the removeCollinearity function 
of the virtualspecies R package (Leroy et  al. 2016). 
When mean values were collinear with extremes, we 
selected the variables representing extreme conditions 
(e.g., warmest/driest condition of a given period) 
because these are more likely to drive mortality and 
local extirpation, and be causally related to the spe-
cies’ establishment (Parmesan et  al. 2000; Mazzotti 
et al. 2016; Maxwell et al. 2019).

For future projections, we used three Global Circu-
lation Models (GCMs; i.e., BCC-CSM1-1, MIROC5, 
and HadGEM2-AO) and two greenhouse gas emis-
sion scenarios (the most optimistic RCP26 and the 

https://www.worldclim.org/data/bioclim.html
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most pessimistic RCP85) to consider a wide panel of 
possible invasion risk in 2070. We selected the same 
GCMs and scenarios for both climate data sources 
to be able to quantify the variation related to each of 
these aspects (see below, ‘Quantifying the level of 
agreement in current invasion risks between climate 
data’ subsection).

Socio-economic factors

We used distance to port and airports as factors of 
introduction and proxies for propagule pressure (Bel-
lard et  al. 2016). We obtained port data from the 
World Port Index (https:// msi. nga. mil/ Publi catio ns/ 
WPI, accessed December 2020) and airport data from 
the OpenFlights Airport database (https:// openfl ights. 
org/ data. html, accessed December 2020). We used 
distance to main roads and highways as an indicator 
of potential spread, since Phelsuma species can be 
accidentally transported by terrestrial vehicles over 
short distances (Deso 2001). We selected the larg-
est two categories of road size (highways and pri-
mary roads) and computed distance from roads using 
the Global Roads Inventory Project (GRIP4) dataset 
(Meijer et al. 2018).

Distribution modelling

We modelled and projected species distributions 
using an ensemble model approach (four model-
ling techniques). We selected a set of top-perform-
ing modelling techniques according to Valavi et  al. 
(2021). These were Random Forest down-sampled 
(RF down-sampled, i.e., RF parametrised to deal 
with a large number of background samples and few 
presence records; Prasad et  al. 2006), and three of 
the best performing models available in the biomod 
platform (Thuiller et al. 2009): a recent implementa-
tion of MaxEnt, i.e. MaxNet (Phillips 2017), Gener-
alised Boosted regression Model (GBM, also known 
as Boosted Regression Tree, BRT; Elith et al. 2008) 
and Generalised Additive Model (GAM; Guisan et al. 
2002). RF down-sampled was set to run 1000 boot-
strap samples/trees.

Our dataset consisted of presence-only data. 
Hence, we generated pseudo-absences at locations 
where the species has never been detected (Sil-
lero et  al. 2021). We first generated five different 
sets of 50,000 randomly-selected pseudo-absences 

(or background points). Our occurrence data were 
retrieved from opportunistic observations, and were 
thus subject to spatial biases (e.g., more observations 
around populated or accessible areas). To account for 
sample bias, we reperformed all calculations apply-
ing a correction based on a different pseudo-absence 
generation strategy (both corrected and uncorrected 
models are needed to reliably measure the effect of 
sample bias correction; Dubos et  al. 2022c; details 
below). In corrected models, we produced five sets 
of pseudo-absences concentrated around the pres-
ence points to reproduce the spatial bias of the sam-
ple, following Phillips et  al. (2009). We used a null 
geographic model (i.e., a map of the geographic dis-
tance to presence points) generated with the dismo R 
package (Hijmans 2012) and used it as a probability 
weight for pseudo-absence selection. This technique 
was deemed appropriate for IAS that are still expand-
ing (i.e., not at equilibrium), because it reduces the 
generation of pseudo-absences in regions that are 
suitable but not yet invaded (e.g., Lanner et al. 2022). 
Since no independent data are available to assess the 
effect of sample bias correction, we used the Relative 
Overlap Index (ROI) based on Schoener’s D overlap 
(Dubos et  al. 2022c). The ROI enables assessment 
of whether the effect of correction is negligible com-
pared to the variability between model runs. It com-
putes (1) the mean overlap between the uncorrected 
and the corrected predictions (i.e., the absolute effect 
of correction), and (2) the overlap between every pair 
of model replicates (between each pseudo-absence 
and cross validation runs, individually for each mod-
elling technique, i.e., model stochasticity). We com-
puted the ROI as follows:

where D0 is the mean overlap between model runs of 
the corrected group and D

(
px, py

)
 is the mean overlap 

between runs of the uncorrected and corrected mod-
els. A value close to 0 represents negligible effect of 
correction (i.e., the effect of sample bias correction is 
of same magnitude than model stochasticity). A value 
close to 1 represents a week effect of correction and 
strong model stochasticity. A negative value suggests 
that the correction effect is of lower magnitude than 
the model stochasticity and hence, irrelevant. We 
assumed that the correction affected our predictions 

ROI =
D0 − D

(
px, py

)

D0

https://msi.nga.mil/Publications/WPI
https://msi.nga.mil/Publications/WPI
https://openflights.org/data.html
https://openflights.org/data.html
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if the overlaps between uncorrected and corrected 
groups were smaller than the overlaps between runs 
(i.e., ROI > 0; Dubos et al. 2022c).

We selected environmental predictors using a sta-
tistical approach, incorporating uncorrelated vari-
ables for which we had hypotheses of causality in 
the establishment or spread of the species. For each 
climate data source and species individually, we 
assessed the relative importance of each variable 
kept with 30 permutation per modelling technique 
(total = 120 per variable, data source, and species). 
The variables included in the final models were those 
with the highest relative importance. These were 
selected using the elbow criterion at the upper hinge 
of variable importance (i.e., the 25% best performing 
models per variable), setting a maximum of nine for 
P. grandis and five variables selected for P. laticauda 
following the ‘number of observations /10 predic-
tors’ rule-of-thumb proposed by Harrell et al. (1996) 
(see also Guisan and Zimmermann 2000). In total, we 
computed 400 models per species (4 modelling tech-
niques × 5 pseudo-absence runs × 5 cross-validation 
runs × 2 modalities of sample bias correction × 2 cli-
mate data source) for the current distribution, and 
2400 projections using future climate data (400 mod-
els × 3 GCMs × 2 SSPs).

Model evaluation

Spatial partitioning is generally recommended to 
reduce spatial autocorrelation between training and 
testing data (i.e., block cross-validation; Valavi et al. 
2019). In our case, occurrence data were highly 
aggregated, which results in strong unbalances 
between blocks. Therefore, we randomly partitioned 
the data, with 80% of the data being used for model 
calibration (training) and 20% for model evalua-
tion (testing). This process was repeated five times 
(cross-validation runs) for each species, pseudo-
absence dataset, correction modality, and climate 
data source. We assessed model performance using 
the Boyce index (Hirzel et  al. 2006), assumed to be 
the best evaluation metric for pseudo-absence data 
(Leroy et  al. 2018). A Boyce index value of 1 sug-
gests that models predicted the presence points well, 
while a value of 0 means that model performance was 
not better than random. For ensemble models (i.e., 
the mean predictions across modelling techniques, 

pseudo-absence runs, and cross-validation runs for 
highly performing models), we discarded models for 
which the Boyce index was below 0.5.

Quantifying the level of agreement in current 
invasion risks between climate data

Treating each species and sample bias correction 
modality separately, we compared the predicted cur-
rent invasion risks obtained from CHELSA and 
Worldclim data. Firstly, for each species, we calcu-
lated an index of difference between CHELSA and 
Worldclim by computing the absolute difference 
between the summed suitability values of all pixels 
of the ensemble map. We divided this difference by 
the summed suitability values of all pixels for the 
CHELSA dataset, in order to express the results as a 
percentage of absolute difference of Worldclim pre-
dictions over CHELSA predictions:

where PCHELSA and PWorldclim are the suitability score 
of pixel j for CHELSA and Worldclim projections, 
respectively. This difference in suitability scores indi-
cates the overall level of agreement between two pro-
jections across the whole predicted area. A high dif-
ference in suitability scores suggests a strong effect 
of the climate data source, either in terms of overall 
suitability scores or surface of suitable environment.

Secondly, we computed an alternative index which 
takes into account spatial information, i.e., spatial 
overlap (Muscatello et  al. 2021; Petford and Alex-
ander 2021; Dubos et  al. 2022a). We computed the 
Schoener’s D overlap between projections of current 
invasion risk between predictions based on the two 
climate datasets considered. A value of 1 indicates 
a perfect spatial match between the two projections 
produced (i.e., no effect of climate data source) and 
a value of 0 represents a perfect mismatch. We com-
puted the Schoener’s D overlap between CHELSA 
and Worldclim projections using the ENMTools R 
package (Warren et al. 2010). Schoener’s D was com-
puted as follows:

���
∑

PCHELSAj −
∑

PWorldclimj
���∑

PCHELSAj

× 100

D
(
px, py

)
= 1 −

1

2

∑

i

|||
pxi − pyi

|||
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where pxi and pyi are the normalised suitability scores 
for uncorrected x and corrected y prediction in grid 
cell i, for each species, cross-validation run, and 
pseudo-absence run individually.

Identifying priorities for surveillance

To identify areas at highest overall risk of invasion, 
we ranked countries and islands according to the 
invasion risk quantified for each species in the pre-
vious steps. We used border data obtained from the 
Global ADMinistrative area (GADM v4.0.4.; https:// 
gadm. org/ data. html) to associate the predicted inva-
sion risks with the corresponding country, island, or 
archipelago (all territories with an ISO country code, 
e.g., Madagascar, Reunion Island, Comoros). We then 
computed the mean invasion risk per territory. To do 
so, we extracted the predicted values of our ensemble 
models and averaged them across all pixels of the ter-
ritory. This approach may downplay the risks in large 
countries with only small regions at risk, but is use-
ful for our study species which are mostly found in 
small islands. Since we had no a priori expectation 
on which climate data source is best for ecological 
modelling, we based the ranking on the mean value 
between predictions obtained between CHELSA and 
Worldclim. To account for uncertainty, we penal-
ised the mean prediction by subtracting its standard 
deviation (mean—SD), following the approach devel-
oped by Kujala et al. (2013) applied to single species 
(Dubos et  al. 2022a). This enabled us to prioritise 
areas where the invasion risk is most-consistently 
identified as high across climate data sources and 
model replicates. We refer to these penalised mean 
predictions as consensus invasion risk. For compari-
son, we also provide the rankings obtained from both 
individual climate data sources (tables available in 
supporting information).

Projected effect of future climate change

We projected the predicted values of our models 
on future climate data. For each species, climate 
data, GCM, and scenario individually, we quanti-
fied the difference between current and future pre-
dicted invasion risk with the two aforementioned 

complementary approaches, i.e., difference in total 
(unpenalised) suitability scores and spatial overlap 
(Dubos et  al. 2022a) . We computed two indices of 
change in invasion risk (we further refer to these 
indices as Species Range Change SRC, following 
Buisson et al. 2010 and Baker et al. 2016). We first 
computed the difference between the summed suit-
ability scores of future and current predictions and 
show the proportion of increase/decrease relative 
to current suitability scores. Secondly, we quanti-
fied spatial suitability change using the Schoener’s 
D overlap to account for spatial information (for 
instance, allowing us to identify distributional shifts 
even when the total suitability does not change). We 
verified that models were well-informed for predic-
tions on novel (future) data using clamping masks 
and examining the shape of predictor responses.

Quantifying the uncertainty related to climate data in 
future projections

We quantified the uncertainty in SRC (difference in 
summed scores and Schoener’s D) related to the cli-
mate scenarios, GCMs, and climate data source. For 
the difference in summed scores, we quantified the 
proportion of deviance explained by climate data 
modalities using linear models (LM, assuming Gauss-
ian errors), with SRC as the response variables, and 
the aforementioned sources of uncertainty as explana-
tory variables, following Baker et al. (2016). We then 
assessed the proportion of deviance explained by each 
source of uncertainty f as follows:

where, Pf = proportion of deviance explained by fac-
tor f, D1 = deviance of full model, Df = deviance of 
full model minus factor f, and D0 = deviance of null 
model.

We repeated this analysis for the Schoener’s D 
overlap using beta-regression GLM instead of LM, 
since overlap measures range continuously between 0 
and 1 (glmmTMB R package; Brooks et al. 2019).

Pf =
Df − D0

D1

https://gadm.org/data.html
https://gadm.org/data.html
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Results

Species distribution models

We selected six or seven variables for P. gran-
dis depending on climate data source and five for 
P. laticauda (Table  1; Fig. S3–S10). The current 
distribution of both species was best explained by 
socio-economic variables ‘distance to ports’ and/
or ‘distance to airports’ (Table  1) and climatic 

variables related to temperature variability (diur-
nal range bio2 and temperature seasonality bio4) 
or minimum temperature (bio6). Precipitation of 
warmest quarter (bio18) was also important for P. 
grandis. For this species, we discarded ‘distance 
to roads’ because this predictor produced spurious 
results, which did not correspond to our biologi-
cal hypothesis (i.e., increasing invasion risk after 
100 km distance) and would reduce the transferabil-
ity of our models. Both species were present in the 
proximity of ports (approximately within 250  km) 
and airports (approx. within 100 km), in areas with 
low temperature variability, and with high mini-
mum temperatures (> 10  °C on average for cold-
est month) and in the case of P. grandis, avoiding 
dry regions (summer precipitation > 250  mm; Fig. 
S5–S6, S9–S10).

Models generally did a good job of predicting 
known presences (most Boyce indices > 0.5), with 
higher Boyce indices for Worldclim-based pre-
dictions compared to CHELSA-based predictions 
(Table  2; Fig. S11–S12). The effect of sampling 
bias correction was more important than model sto-
chasticity (ROI = 0.07 with CHELSA, ROI = 0.09 
with Worldclim for both species). We discarded 5 to 
25 poorly performing models out of 100 per modal-
ity (species, climate data source, and sample bias 
correction; Table 2).

Current invasion risks

We identified important invasion risks in multi-
ple regions throughout the world, mostly in tropi-
cal islands (Fig. 1, 2). In both species, we found the 

Table 1  Selected environmental variables for the distribution 
modelling of two invasive Phelsuma species

Climate data P. grandis P. laticauda

CHELSA Distance to airports
Distance to ports
Bio2 Temperature 

diurnal range
Bio4 Temperature 

seasonality
Bio5 maximal sum-

mer temperature
Bio6 minimal win-

ter temperature
Bio14 precipitation 

of driest month

Distance to airports
Bio4 Temperature sea-

sonality
Bio5 maximal summer 

temperature
Bio6 minimal winter 

temperature
Bio14 precipitation of 

driest month

Worldclim Distance to airports
Distance to ports
Bio2 Temperature 

diurnal range
Bio4 Temperature 

seasonality
Bio6 minimal win-

ter temperature
Bio18 summer 

precipitation

Distance to airports
Bio4 Temperature sea-

sonality
Bio5 maximal summer 

temperature
Bio6 minimal winter 

temperature
Bio14 precipitation of 

driest month

Table 2  Model performance of the distribution models for two invasive Phelsuma species, inferred from mean Boyce indices

We show the number of poorly performing models (Boyce < 0.5) which were removed from the ensemble models (out of 100 models 
per modality)

P. grandis P. laticauda

Source Sample bias Mean Boyce n models removed Mean Boyce n models 
removed

CHELSA Uncorrected 0.46 25 0.58 20
Corrected 0.73 5 0.70 7

Worldclim Uncorrected 0.60 18 0.68 12
Corrected 0.71 8 0.68 12
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highest invasion risks in islands of the Indian Ocean 
(e.g., Comoros, Mayotte), Pacific Ocean (e.g., Niue, 
New Caledonia), the Caribbean region (especially in 
the Greater Antilles and the Bahamas), both coasts 
of central Africa (Angola, Congo, Tanzania, Mozam-
bique), and the Indo-Pacific region (Philippines, 
Vietnam, New Guinea). Suitable conditions are also 
met in Cape Verde and the coast of Brazil for both 
species. We found different invasion risks between 
both species in the Lesser Antilles, Vanuatu, and the 
Hawaiian archipelago, with greater invasion risks for 
P. laticauda in these regions (Fig. 3).

Projections of current invasion risks differed 
locally when calibrated using the different climate 

sources (see example of the Caribbean in Fig.  3; 
individual ensemble models are available in sup-
porting information, Fig. S13–S20). We found 
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Fig. 1  Current consensus global invasion risks for Phelsuma 
grandis. Consensus invasion risk was obtained from mean pre-
dictions between all simulations (including models based on 
CHELSA and Worldclim climate data), subtracting the stand-

ard deviation to account for uncertainty. Closed black circles 
represent the presence points. Climate data source-specific 
maps are available in supporting information (Fig. S13–S16)

Table 3  Degree of agreement between current invasion risks 
assessed from CHELSA and Worldclim climate data

We computed the absolute difference in summed suitability 
scores (expressed as percentage), and Schoener’s D overlap 
(expressed as spatial difference: 1-D). A higher value suggests 
a lower agreement

Difference in suitablility 
scores (%)

1-Schoener’s 
D overlap (%)

P. grandis 13.9 17.5
P. laticauda 2.8 12.0
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notable differences between both projections in 
summed suitability scores and spatial overlap 
(Table 3). Climate data source affected the ranking 
of invasion risk per territory, with sometimes dra-
matic differences (e.g., 36 rank difference for Saint 
Helena, Ascension, and Tristan da Cunha for P. 
grandis; 30 rank difference for Saint Martin for P. 
laticauda; Table S1, S2).

Future invasion risks

We predict a decrease in invasion risk by 2070 in 
most cases (Fig.  4; S19–22). We found important 
differences between projections based on different 
climate data, with higher SRC for Worldclim-based 
projections overall (Fig. 4). For P. grandis, we predict 

a decrease in total invasion risk in all cases, ranging 
between 8.6 and 16.1% (total scores), and a spatial 
change ranging between 9.9 and 19.4% (1-Schoener’s 
D overlap) depending on the scenario and the climate 
data. For P. laticauda, projections of climate change 
effect differed between climate data sources, rang-
ing between − 4.7% (decline) and + 18.8% (increase) 
in overall invasion risk, and a spatial change rang-
ing between 11.7 and 20.8%. Clamping masks indi-
cated novel conditions for one variable throughout the 
native and invaded range, for Worldclim only (Fig. 
S25, S26). These novel conditions seem to be mostly 
driven by maximal temperatures (Bio5; Fig. S27). 
Given the hump-shaped relationships between our 
predictors and suitability (Fig. S5, S9, S10), clearly 
identifying suitable windows of climate conditions, 
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Fig. 2  Current consensus global invasion risks for Phelsuma 
laticauda. Consensus invasion risk was obtained from mean 
predictions between all simulations (including models based 
on CHELSA and Worldclim climate data), subtracting the 

standard deviation to account for uncertainty. Closed black cir-
cles represent the presence points. Climate data source-specific 
maps are available in supporting information (Fig. S17–S20)
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there is little risk of uncertain predictions due to 
extrapolation.

In most cases, the source of climate data was the 
most important driver of uncertainty in future inva-
sion risk projections (Fig. 5). In terms of total scores 
(SRC), the source of climate data explained as much 
uncertainty as the scenario for P. laticauda. Other-
wise, climate data source was by far the largest driver 
of uncertainty in terms of spatial overlap for both 
species.

Discussion

We modelled the current and future distribution of 
two invasive alien reptile species using a recently 
advocated approach, accounting for socio-economic 
factors and a wide panel of climate data. We identi-
fied several areas at high risk of invasion, findings 
that were robust to the choice of climate data. We 
propose that these areas be considered priority areas 
for surveillance efforts and monitoring, but areas 
identified at risk by single climate data must be also 
considered. We found important differences relating 
to the source of climate data. Overall, we predict that 
climate change will reduce invasion risks for P. gran-
dis and slightly increase risks for P. laticauda.

Fig. 3  Predicted current invasion risks of Phelsuma grandis 
(top) and Phelsuma laticauda (bottom) based on two sources 
of climate data (left: CHELSA; right: Worldclim) in the Carib-
bean region. Predicted values are averaged across model rep-
licates (n = 100 per species and climate data source) and are 

penalised by uncertainty (standard variation across replicates). 
Red represents high invasion risk with high certainty, blue rep-
resents moderate invasion risk and grey represents areas where 
uncertainty was higher than invasion risks
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Drivers of spread and establishment

The spread of both species is driven by maritime and/
or aerial transportation. The importance of proximity 
to ports and airports may be caused by the insular-
ity of our study species (ports and airports are present 

in most islands). However, with our pseudo-absence 
sampling strategy (being more concentrated around 
presence points), the detection of this effect of these 
variables suggests that species are more present near 
ports and airports than would be expected by chance. 
Models identified an effect of proximity to ports and 
airports within relatively long distances (250 and 
100 km, respectively), which may be driven by occur-
rences points located in continental regions (Mada-
gascar and Florida). This may explain the nearly con-
stant high invasion risk in small islands (e.g. O’ahu). 
However, we still identified gradients in invasion 
risks within islands smaller than 100 km width (e.g. 
Hawai’i and Reunion Island), which suggests the pos-
sibility to prioritise specific areas in small islands. 
Both P. grandis and P. laticauda are commonly found 
on anthropogenic structures including hotels and 
plant nurseries (pers. obs., Ineich, Choeur, Crottini; 
Gehring et  al. 2010), as well as ornamental plants 
and plantation crops such as bananas and coconuts 
(Gill et  al. 2001; D’Cruze et  al. 2009; Porcel et  al. 
2021). Hence, individuals may be regularly carried 
via containers and accidentally introduced into ship-
ments (Fritts 1987; Dubos et al. 2014; Khoury et al. 
2021). Introductions were also caused by intentional 
or accidental release from captivity in regions where 
they are imported for the pet trade (e.g., in Florida; 

Fig. 4  Effect of climate 
data source on Species 
Range Change (SRC, 
overall difference between 
current and future suitabil-
ity, here expressed as a pro-
portion relative to current 
suitability) and Schoener’s 
D overlap (percentage of 
common spatial information 
between current and future 
projections) for the invasive 
P. grandis and P. laticauda. 
Models were corrected for 
sample bias. Indices were 
computed individually for 
each climate data source, 
scenario (SSP) and Global 
Circulation models (GCMs, 
represented by the black 
points). Boxes represent 
the  25th and  75th percentile 
and the bars represent the 
median

Fig. 5  Proportion of deviance explained by climate data 
modalities (Scenario, Global Circulation Model and climate 
data source) in projected climate change effect (Overlap and 
Suitability scores) on a Phelsuma grandis and b Phelsuma lati-
cauda. Overlap was computed with Schoener’s D between cur-
rent and future projections; suitability scores are the difference 
in total scores between current and future projections
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Andreone et  al. 2012; Fieldsend and Krysko 2019). 
We did not integrate the pet trade per se to our analy-
sis because the impact of the pet trade is mainly due 
to transportations (through accidental release from 
containers in ports and airports, as it has been the 
case in Toamasina, Madagascar; Dubos et al. 2014). 
Therefore, the effect of pet trade has been taken into 
account in our models with the proximity to ports and 
airports predictors. Moreover, introductions related 
to the pet trade after commercialisation are mainly 
intentional, which has been observed only in Florida. 
Hence, adding pet trade data would probably have 
induced a bias in our results. Both species were able 
to establish in areas with a low variability in tempera-
ture, both at the daily and annual scale. Their native 
range is located at the north of Madagascar, close 
to the shores, where the climate is mainly equatorial 
(Peel et al. 2007), with little annual and daily thermal 
variation. Their affinity with low thermal variability 
may be related to the strong effects of temperature 
fluctuation on activity and reproduction (Georges 
2013; Noble et  al. 2018, Choeur et  al. 2022). Our 
study species are active throughout the year, which 
may explain their affinity with low temperature sea-
sonality. Their year-round activity implies a need for 
continuous food availability. A low seasonality may 
serve to maintain fruit/nectar production and insect 
activity, all sources of food for both P. grandis and 
P. laticauda (Dervin et  al. 2013; Dubos et  al. 2020; 
Hoarau et al. 2021). The link with low variability at 
the daily and annual scale may be due to temperature-
dependant sex determination, a common feature in 
reptiles including Phelsuma spp. (Gamble 2010; Cor-
nejo-Páramo et al. 2020). Both, P. grandis and P. lati-
cauda lay their eggs on the surface of the substrate, 
exposing them to daily fluctuation in temperature. In 
our case, a relatively constant temperature during the 
day and throughout the year may help balancing the 
sex-ratio and maintain population dynamics (Georges 
2013).

We found that our study species were not able to 
establish in regions with low minimal temperature 
(< 10  °C), presumably because the cold reduces the 
activity of ectotherms and hence, their survivability. 
This corresponds to the lower bound of thermal tol-
erance commonly found in tropical reptiles (Sunday 
et al. 2011). Minimal temperature may also influence 
incubation duration and sex determination (Georges 
2013; Roesch et  al. 2021). An extended incubation 

period may increase the probability of hatching 
failure and egg predation. Lower nesting success 
and unbalanced sex ratio could disrupt population 
dynamics and prevent persistence in colder regions. 
The establishment of both species in Florida may be 
surprising given the low temperatures occasionally 
occurring during winter compared to northern Mada-
gascar. Recent assessments of the climatic niche of P. 
grandis revealed an important dissimilarity between 
the climate of its native range and the invaded areas 
of Florida (Fieldsend et  al. 2021a).  This suggests a 
high potential for either thermal plasticity or adapta-
tion to new environments (Card et al. 2018; Lapwong 
et al. 2021)  or underlies that the species’ native dis-
tribution is strongly limited by biotic interactions 
(predation and competition; e.g., competition with P. 
kochi; Fieldsend et al. 2021a). This is consistent with 
findings on Hemidactylus frenatus and Anolis sagrei 
which were able to spread in areas colder than their 
native range (Angetter et  al. 2011; Lapwong et  al. 
2021). Invasive success is often facilitated by high 
genetic diversity (Angetter et al. 2011), which may be 
enhanced by multiple native-range sources as it is the 
case for P. grandis in Florida (Fieldsend et al. 2021c). 
Further research may assess the level of genetic diver-
sity of both species throughout their invaded range to 
better understand the species’ ability to persist in new 
environments.

Both gecko species did not establish in regions 
with arid seasons, presumably because low precipi-
tation limits primary and secondary production and 
therefore food availability (Dubos et  al. 2019). Pro-
longed drought periods are associated with body con-
dition declines, increased mortality, and local extir-
pation in reptiles (Maxwell et  al. 2019), conditions 
which may prevent the establishment of our study 
species.

Current invasion risks

Areas predicted to be at high risk of invasion were 
consistent between CHELSA- and Worldclim-based 
projections, but with locally important differences. 
These were mostly located in islands of the Car-
ibbean, the islands of the Western Indian Ocean, 
South-East Asia, and Eastern Oceania. The poten-
tial establishment of invasive alien Phelsuma spe-
cies in these areas may expose the local fauna to 
new competitors or predators. Both P. grandis and 
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P. laticauda are highly flexible in terms of habitat 
use (D’Cruze and Kumar 2011; Dubos et al. 2014) , 
which raises concerns for native synanthropic spe-
cies as well as for species dwelling in natural for-
ested habitats. Species at risk include native Phel-
suma species (as suggested by the reduction of the 
P. lineata population in the eastern seaport town 
of Toamasina), or any other diurnal arboreal rep-
tiles with similar habitat use (e.g., perch height, 
substrate; Augros et  al. 2018; Wright et  al. 2021) , 
such as the Critically Endangered brown red-bellied 
anole Anolis koopmani from Haiti, the Endangered 
black-throated stout anole Anolis armouri from 
Haiti and the Dominican Republic, or the Critically 
Endangered Finca Ceres anole Anolis juangund-
lachi from Cuba. Given the broad range of habitat 
types occupied by our study species, conservation 
concern should also be given to all smaller spe-
cies for which distribution matches the areas at risk 
(e.g., Bavaya spp. or Eurodactylodes spp. from New 
Caledonia). The Critically Endangered ’Eua Forest 
Gecko Lepidodactylus euaensis from Tonga is of 
particular concern, given its conservation status and 
the very high invasion risk identified for this island. 
Both P. grandis and P. laticauda are diurnal, but can 
also be active at night due to artificial light (Dubos 
et al. 2020; Baxter-Gilbert et al. 2021), highlighting 
the risk of competition with nocturnal species living 
near anthropogenic structures such as the Critically 
Endangered Barbados leaf-toed gecko Phyllodac-
tylus pulcher (Williams et  al. 2016) . The poten-
tial impact of invasive Phelsuma species on native 
fauna may be mitigated by potential plasticity, 
which could promote microclimatic and/or habitat 
partitioning (Noble et  al. 2011; Porcel et  al. 2021; 
Ryan and Gunderson 2021). Future studies should 
investigate the potential for spatial, temporal, or 
environmental shift for P. grandis, P. laticauda, and 
their sympatric species to better understand which 
species are at greater risk.

The choice of climate data source

We identified local differences between predicted 
invasion risks using different climate data sources. 
Differences may be driven by the selection of differ-
ent variables (e.g., models calibrated with CHELSA 
data selected ‘Daily temperature range’ but not with 

Worldclim for P. grandis); however, a recent study 
showed that differences can persist even when the 
same predictors are selected (Dubos et  al. 2022a; 
see also Jiménez-Valverde et  al. 2021). The mis-
match may be better explained by the methods used 
to compute the climatologies. Worldclim is built from 
interpolated data with elevation and distance to the 
coast as predictors in addition to satellite data (Fick 
and Hijmans 2017). CHELSA used statistical down-
scaling for temperature, and precipitation estimations 
incorporate orographic factors (i.e., wind fields, val-
ley exposition, boundary layer height; Karger et  al. 
2017). Such differences may be exacerbated in areas 
with strong topographic heterogeneity such as Oce-
anic Islands (e.g., Lannuzel et  al. 2021). The differ-
ence in temporal coverage may represent another 
source of mismatch, with Worldclim representing the 
conditions of the 1960–1990 period while CHELSA 
was computed for 1979–2013. Since we have no a 
priori knowledge of which climate data source is 
most useful for predicting invasion risks, we sug-
gest that studies aiming to predict current and future 
invasion risks should consider multiple climate data 
sources and quantify the uncertainty related to these.

Future invasion risks

Overall (i.e. when considering SRC), we predict that 
future climate change will reduce invasion risk for P. 
grandis according to both Worldclim and CHELSA, 
as commonly found for invasive reptiles (Bellard 
et  al. 2013; but see Piquet et  al. 2021). Note that in 
absence of biosecurity measures, a high probability 
of invasion might persist despite climate effects. On 
the other hand, invasion risk is predicted to increase 
for P. laticauda according to Worldclim but not 
according to CHELSA. For both species, Worldclim-
based projections tended to predict higher risks than 
CHELSA-based projections. The spatial mismatch 
(overlap) was also greater with Worldclim. The differ-
ences between future projections based on CHELSA 
and Worldclim were of similar, or greater extent to 
that between the two extreme scenarios (SSP126 and 
SSP585; Fig.  4). This suggests that the inclusion of 
multiple climate datasets is of similar importance to 
that of emission scenarios.

Reptiles may shift their phenology in response to 
environmental change (Kearney et al. 2009), and this 
has already been observed in Phelsuma spp. (Dubos 



Choice of climate data influences predictions for current and future global invasion risks…

1 3
Vol.: (0123456789)

et  al. 2020; Baxter-Gilbert et  al. 2021). Behavioural 
response to climate change—and therefore pheno-
logical shifts—may interact with geographic response 
(Kearney et  al. 2010). Further research is needed to 
fully understand the response of invasive reptiles to 
climate change and improve proactive actions.

On the use of 5 arc minutes resolution

Oceanic islands are characterised by highly hetero-
geneous topography and large gradients in climatic 
conditions within small areas. At the global scale, 
high resolutions (e.g. 30 arc seconds) are extremely 
demanding in terms of computing power and data 
storage, which is the reason of our choice of 5 arc 
minutes resolution. Our projections do not enable us 
to represent well this heterogeneity and we cannot 
identify suitable areas at fine scale. This may have led 
to an overestimation of the width of climatic niches 
of our study species. However, our projections show 
a variability between small tropical islands (e.g., 
Comoros, Mayotte and the small islands of the Baha-
mas), which supports that we identified the areas that 
best correspond to the species climatic niches. Pro-
jections also show a variability within small islands 
that are larger than one pixel (> 10 km; e.g., Reunion 
and the Island of Hawai’i; Fig. S13, S14, S17, S18), 
suggesting that high altitude colder climates were 
successfully ruled out in most cases. Our aim was to 
identify the regions and islands with high risk of inva-
sion in order to enhance surveillance efforts at entry 
points rather than projecting the local areas likely to 
be occupied, and we believe our results are relevant 
with regard to prioritisation at the global scale.

Modelling invasion risks despite non-equilibrium

Ecological niche models of invasive species that are 
still expanding their range are wrong because they 
violate the equilibrium assumption (Hui 2022). Yet, 
they can be useful if calibrated adequately, because 
they can provide indications of areas that are suit-
able for invasive species on the basis of the existing 
knowledge of their distribution. For SDM predictions 
to be useful indicators of risks of invasion, the pro-
tocol must account for the lack of equilibrium and 
for other biases. There are two possible ways to cope 
with this issue. A first approach consists in excluding 
non-native occurrences (Barbet-Massin et  al. 2018). 

This has already been tested for P. grandis, and pro-
jections based on models calibrated without native 
occurrence points omitted some occupied regions and 
suitable climate conditions (Fieldsend et  al. 2021a). 
A second approach consists in addressing the pro-
cesses resulting in the lack of equilibrium in the mod-
elling protocol (Hui 2022). We adopted this second 
approach with two methodological aspects. We added 
variables with clear hypotheses related to the risks of 
introduction and spread (e.g. Lanner et al. 2022). By 
adding such variables (here we used distance to ports 
and airports), the model is less likely to look for the 
explanation to non-native limits of the species range 
in climatic variables. Similarly, sampling biases may 
result in a similar effect to non-equilibrium viola-
tions: if biases are not accounted for, then models will 
look for an explanation in climatic variables, which 
will result in misleading conclusions. We used here a 
sample bias correction technique which concentrated 
the generation of pseudo-absences points around 
presence points. This approach reduces the likelihood 
of downplaying suitable environments in unreached 
areas.

Concluding remarks

The source of climate data was not accounted for 
in SDM studies until recently (Baker et  al. 2016; 
Morales-Barbero and Vega-Álvarez 2019; Datta 
et al. 2020; Ocon 2020; Dubos et al. 2022b, a; Stew-
art et al. 2022) . To the best of our knowledge, this 
study is the first to account for multiple sources of 
climate data in invasion risk assessments. We high-
lighted spatial differences in the quantification of 
environmental suitability, potentially leading to the 
omission of at-risk regions. Further studies should 
assess the sensitivity of invasion risks to climate 
data at broader taxonomic scales, and across differ-
ent landscapes (especially smaller oceanic islands 
vs. continents).

The economic cost of IAS is low when detected 
early, but rises rapidly if not detected because of the 
damage caused and increased management efforts 
(Renault et al. 2021) . Reptiles represent the second 
worst invasive vertebrate class in terms of annual 
economic cost worldwide (Diagne et  al. 2021) . 
Therefore, it seems largely economically viable to 
promote efficient biosecurity measures in order to 
ensure early detections (Cuthbert et al. 2022; Dubos 
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et al. 2023) and develop public awareness to reduce 
intentional release (Perry and Farmer 2011) . Given 
the ecological and economic stakes, surveillance 
programmes should be considered in areas identi-
fied as at high risk of invasion based on single cli-
mate data. However, surveillance efforts should be 
prioritised where high invasion risks are identi-
fied with high certainty, i.e., based on predictions 
accounting for multiple climate data sources.
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